Abstract
Magnetic fields provide a valuable method to manipulate atomic energy levels and interactions in quantum precision measurements, but achieving precise measurements requires collaboration between the magnetic field system and the optical detection system. We propose a magnetic field system that incorporates a fast-switching magnetic field and an alternating magnetic field. Specifically, we enhance the switching speed by making structural improvements during the switching operation. An independent control approach is employed to reduce the switching time caused by electromagnetic induction across the coil using multilayer coils. The results demonstrate an inverse correlation between the rise and fall times of the magnetic field switch and the number of independently stacked coil layers, indicating the possibility of achieving further improvements in switching speed through structural enhancements. The system developed here has considerable potential for application to diverse quantum systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have