Abstract
Thermal techniques (differential scanning calorimetry (DSC) and the vacuum stability test (VST)), according to STANAG 4147, and non-thermal techniques (Fourier transform infrared (FTIR) spectrometry and X-ray diffractometry (XRD)) were used to examine compatibility issues for 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) with a selection of insensitive explosives, including nitroguanidine (NQ), 2,4,6-trinitrotoluene (TNT), 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO), 2,4,6-triamino-1,3,5-trinitrobenzene (TATB), 3-nitro-1,2,4-triazol-5-one (NTO) and 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). DSC measurements showed that ANPyO, TATB, NTO and LLM-105 were compatible with CL-20. The compatibility of CL-20/NQ, CL-20/TNT, CL-20/ANPyO, CL-20/TATB, CL-20/NTO and CL-20/LLM-105 mixtures was further explored using the VST, which revealed that all the selected insensitive explosives were compatible with CL-20. Possible chemical interactions were suspected for CL-20/TATB from the FTIR results and for CL-20/NTO from XRD analysis. In summary, ANPyO and LLM-105 demonstrated the optimal compatibility with CL-20.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.