Abstract

ABSTRACTThe melt compatibility between poly(L‐lactide) (PLA) and polyamides (PAs) with related thermomechanical properties is addressed. A particular attention is paid to four commercial PAs with extrusion processing temperatures close to PLA (PA10‐10 to PA12). PLA/PA blend morphologies without a compatibilizer are first revealed by scanning electron microscopy. PA12 displays the best droplet dispersion into PLA (Dn 700 nm), whereas a poor interfacial adhesion is attested for PLA/PA10‐10 blends. Interfacial tensions corroborate the PLA/PA10‐10 incompatibility (γ12 9 mN/m, 240 °C) with decreasing γ12 in the order PLA/PA10‐10 > PLA/PA11 > PLA/PA12 (γ12 2 mN/m). Surface tensions confirm the highest compatibility between PLA and PA12. Ductilities, toughnesses, and thermal resistances of PLA/PA blends are evaluated up to 40‐wt % PA. Brittle‐to‐ductile transitions are observed for PA content higher than 30‐wt % with the highest ductility for PLA/PA12, in accordance with their enhanced compatibility. Impact strengths display similar trends with a twofold increase for PLA/PA12. An outstanding synergy between PLA and PA is highlighted by dynamic mechanical analyses with heat deflection up to 130 °C for PLA/PA blends. The synergy arises from a peculiar crystallization of PLA in the presence of PA. PLA/PA morphologies/interfaces can be consequently tuned by an appropriate PA choice with interesting improvements of thermomechanical properties for high‐performance/durable applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48440.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.