Abstract
We consider the flow control problem for a general class of compartmental nonlinear systems, which can be associated with a graph whose nodes represent subsystems with their own internal dynamics, and whose arcs represent flow links among them. We consider a network-decentralized control: each agent controls a link between two nodes and decides its actions based on the states of these nodes only. We first provide general necessary and sufficient stabilizability conditions, proving that suitable network-decentralized strategies assure robust stability. We also show that, if all the subsystems at the nodes are marginally stable, a proper network-decentralized strategy asymptotically assures the minimum-norm flow, without requiring communication among agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.