Abstract

The study on precipitation isotope variation can potentially improve the understanding of weather processes, regional water cycle and paleoclimate reconstruction in the subtropical monsoon region. Based on the measured stable isotope composition in precipitation (δ18Op) and daily precipitation from January 2010 to December 2021 in Changsha of the subtropical monsoon region of eastern China, the δ18Op variations, amount effect and local meteoric water line (LMWL) were analyzed and compared on daily, monthly and annual time scales, as well as under different precipitation intensities. The results showed that, on the daily time scale, δ18Op was significantly and negatively correlated with precipitation in the study area. Influenced by subcloud evaporation, small precipitation events (≤5 mm/d) could change the rainout level of precipitation isotopes. There were significant differences in the slope and intercept of the LMWL on different time scales, in different seasons and under different precipitation intensities. On the daily and monthly time scales, the slope and intercept of the LMWL in the cold half of the year were significantly smaller and larger than those in the warm half of the year, respectively, and the slope and intercept of the LMWL increased significantly with precipitation intensity, and then remained largely stable. On the annual time scale, the slope and intercept of the LMWL in the cold half of the year were smaller than those in the warm half of the year. The possible reasons for the differences in the LMWL on different time scales are the combined effects of seasonal differences in precipitation intensity and water vapor sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call