Abstract

BackgroundFigs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps.ResultsWe surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes.ConclusionsOur study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

Highlights

  • Figs and fig-pollinating wasp species usually display a highly specific one-to-one association

  • The COI divergence is greater than 2%, so it suggests the existence of cryptic species within the morphologically defined E. verticillata

  • Our results show that wEv1 and wEv2 may be involved in host speciation, we can not demonstrate that Wolbachia cause reproductive isolation among these three host species

Read more

Summary

Introduction

Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. Co-pollinators have been reported, but we do not yet know how they evolve They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. Cytoplasmic incompatibility (CI), the most common effect on host reproduction, usually occurs between infected males and uninfected females (or females infected by a different incompatible Wolbachia strain), inducing progeny sterility or mortality [13]. This post-zygotic reproductive isolation can potentially cause or facilitate host speciation [14,15,16,17,18]. Wolbachia may play a potential important role in co-pollinator speciation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call