Abstract

Stochastic optimization finds a wide range of applications in operations research and management science. However, existing stochastic optimization techniques usually require the information of random samples (e.g., demands in the newsvendor problem) or the objective values at the sampled points (e.g., the lost sales cost), which might not be available in practice. In this paper, we consider a new setup for stochastic optimization, in which the decision maker has access to only comparative information between a random sample and two chosen decision points in each iteration. We propose a comparison-based algorithm (CBA) to solve such problems in one dimension with convex objective functions. Particularly, the CBA properly chooses the two points in each iteration and constructs an unbiased gradient estimate for the original problem. We show that the CBA achieves the same convergence rate as the optimal stochastic gradient methods (with the samples observed). We also consider extensions of our approach to multidimensional quadratic problems as well as problems with nonconvex objective functions. Numerical experiments show that the CBA performs well in test problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.