Abstract
<span lang="EN-US">Heart sound signals, phonocardiography (PCG) signals, allow for the automatic diagnosis of potential cardiovascular pathology. Such classification task can be tackled using the bidirectional long short-term memory (biLSTM) network, trained on features extracted from labeled PCG signals. Regarding the non-stationarity of PCG signals, it is recommended to extract the features from multiple short-length segments of the signals using a sliding window of certain shape and length. However, some window contains unfavorable spectral side lobes, which distort the features. Accordingly, it is preferable to adapt the window shape and length in terms of classification performance. We propose an experimental evaluation for three window shapes, each with three window lengths. The biLSTM network is trained and tested on statistical features extracted, and the performance is reported in terms of the window shapes and lengths. Results show that the best performance is obtained when the Gaussian window is used for splitting the signals, and the triangular window competes with the Gaussian window for a length of 75 ms. Although the rectangular window is a commonly offered option, it is the worst choice for splitting the signals. Moreover, the classification performance obtained with a 75 ms Gaussian window outperforms that of a baseline method.</span>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have