Abstract

Sixteen healthy right-handed subjects performed a complex finger-tapping task that broadly activates the motor and premotor regions, including primary motor (M1), ventral premotor (PMv), and dorsal premotor (PMd) cortex. This task was performed with the right hand only, left hand only and both hands simultaneously. Behavioral performance and the possibility of mirror movements were controlled through the use of MRI-compatible gloves to monitor finger movements. Using spatially normalized ROIs from the Human Motor Area Template (HMAT), comparisons were made of the spatial extent and location of activation in the left and right motor regions between all three tasks. During unilateral right and left hand tapping, ipsilateral precentral gyrus activation occurred in all subjects, mainly in the PMv and PMd. Ipsilateral M1 activation was less consistent and shifted anteriorly within M1, towards the border of M1 and premotor cortex. Regions of ipsilateral activation were also activated during contralateral and bilateral tasks. Overall, 83%/70%/58% of the ipsilaterally activated voxels in M1/PMd/PMv were also activated during contralateral and bilateral tapping. The mean percent signal change of spatially overlapping activated voxels was similar in PMv and PMd between all three tasks. However, the mean percent signal change of spatially overlapping M1 activation was significantly less during ipsilateral tapping compared with contra- or bilateral tapping. Results suggest that the ipsilateral fMRI activation in unilateral motor tasks may not be inhibitory in nature, but rather may reflect part of a bilateral network involved in the planning and/or execution of tapping in the ipsilateral hand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call