Abstract

The current technological status of ultraviolet light emitting diodes (UV-LEDs) has reached a point where small-scale ultraviolet (UV) water disinfection applications, that is, for greywater reuse appear increasingly promising. This study compares the germicidal and economical aspects of UV-LEDs with traditional UV. Pure cultures and environmental greywater samples were exposed to different radiation doses from both UV sources with the germicidal effect comparative at equivalent doses. The impact of particle size on disinfection efficiency was investigated in two greywater fractions of varying mean particle size. Disinfection efficiency was found to be dependent on particle size with larger particles reducing microbial inactivation for both UV sources. Post-UV blending to detach particle-associated coliforms resulted in higher bacterial counts for both UV sources although to a lesser extent for UV-LEDs suggesting that it might be less affected by the presence of particles than traditional UV sources, possibly due to the UV radiation being emitted by multiple diodes at different angles compared to the traditional UV collimated beam setup. Nevertheless, removal of particles prior to UV disinfection is necessary to meet strict water reuse standards. Although UV-LEDs are currently prohibitively expensive, improvements in performance indicators might make this technology economically competitive within the next few years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call