Abstract

Two-photon excitation laser scanning fluorescence microscopy (2p-LSM) was compared with UV-excitation confocal laser scanning fluorescence microscopy (UV-CLSM) in terms of three-dimensional (3-D) calcium imaging of living cells in culture. Indo-1 was used as a calcium indicator. Since the excitation volume is more limited and excitation wavelengths are longer in 2p-LSM than in UV-CLSM, 2p-LSM exhibited several advantages over UV-CLSM: (1) a lower level of background signal by a factor of 6-17, which enhances the contrast by a factor of 6-21: (2) a lower rate of photobleaching by a factor of 2-4; (3) slightly lower phototoxicity. When 3-D images were repeatedly acquired, the calcium concentration determined by UV-CLSM depended strongly on the number of data acquisitions and the nuclear regions falsely exhibited low calcium concentrations. probably due to an interplay of different levels of photobleaching of Indo-1 and autofluorescence, while the calcium concentration evaluated by 2p-LSM was stable and homogeneous throughout the cytoplasm. The spatial resolution of 2p-LSM was worse by 10% in the focal plane and by 30% along the optical axis due to the longer excitation wavelength. This disadvantage can be overcome by the addition of a confocal pinhole (two-photon excitation confocal laser scanning fluorescence microscopy), which made the resolution similar to that in UV-CLSM. These results indicate that 2p-LSM is preferable for repeated 3-D reconstruction of calcium concentration in living cells. In UV-CLSM, 0.18-mW laser power with a 2.6-phi pinhole (in normalized optical coordinate) gives better signal-to-noise ratio, contrast and resolution than 0.09-mW laser power with a 4.9-phi pinhole. However, since the damage to cells and the rate of photobleaching is substantially greater under the former condition, it is not suitable for repeated acquisition of 3-D images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call