Abstract
Background: Aluminum stands out for being a light, corrosion-resistant, and recyclable metal, achieving wide coverage in the market. When incorporated into alloying elements, it is possible to acquire other desirable characteristics. Alloy 6063, intended for architectural purposes, has aesthetic, structural, and strength functions. Anodized finishing is performed through an electrolytic process, ensuring a more resistant aluminum oxide film than that formed naturally. For decorative purposes, the anodic film coloration can be performed by several methodologies, in this case, for the coloration by organic adsorption, with the use of aniline, and the electrolytic coloration, composed of tin sulfate salts, both for obtaining the black color. Aim: Compare of two different staining methods on the surface of anodized profiles of aluminum alloy 6063. Methods: Profile samples were collected and tests were carried out to measure the thickness of the anodic layer, immersion tests with 3,5 percent sodium chloride, for 1000 hours, and neutral saline mist, for 600 hours. Results and Discussion: Both methodologies proved to be resistant to immersion tests with sodium chloride, as well as with neutral saline mist, and these tests are quite aggressive and provide corrosion of the material when not well treated. Corrosion points were only seen at the intersections performed, and in the rest of thearea, no points were detected. Conclusions: The result of both methodologies was positive, considering tht there was no corrosion in the tested samples, except in the intersections performed, as well as the maintenance of the color in both tested methodologies, which was not expected in the literature. For future work, it is suggested to deepen the study to perform electrochemical impedance spectroscopy tests for exaluate the strength of the anodic film and perform anodizing with the same parameters, however, with different anilines to analyze their behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.