Abstract

Abstract. We present a comparison between satellite-based TROPOMI (TROPOspheric Monitoring Instrument) NO2 products and ground-based observations in Helsinki (Finland). TROPOMI NO2 total (summed) columns are compared with the measurements performed by the Pandora spectrometer between April and September 2018. The mean relative and absolute bias between the TROPOMI and Pandora NO2 total columns is about 10 % and 0.12×1015 molec. cm−2 respectively. The dispersion of these differences (estimated as their standard deviation) is 2.2×1015 molec. cm−2. We find high correlation (r = 0.68) between satellite- and ground-based data, but also that TROPOMI total columns underestimate ground-based observations for relatively large Pandora NO2 total columns, corresponding to episodes of relatively elevated pollution. This is expected because of the relatively large size of the TROPOMI ground pixel (3.5×7 km) and the a priori used in the retrieval compared to the relatively small field-of-view of the Pandora instrument. On the other hand, TROPOMI slightly overestimates (within the retrieval uncertainties) relatively small NO2 total columns. Replacing the coarse a priori NO2 profiles with high-resolution profiles from the CAMS chemical transport model improves the agreement between TROPOMI and Pandora total columns for episodes of NO2 enhancement. When only the low values of NO2 total columns or the whole dataset are taken into account, the mean bias slightly increases. The change in bias remains mostly within the uncertainties. We also analyse the consistency between satellite-based data and in situ NO2 surface concentrations measured at the Helsinki–Kumpula air quality station (located a few metres from the Pandora spectrometer). We find similar day-to-day variability between TROPOMI, Pandora and in situ measurements, with NO2 enhancements observed during the same days. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as a result of reduced emissions from traffic and industrial activities (as expected in urban sites). The TROPOMI NO2 maps reveal also spatial features, such as the main traffic ways and the airport area, as well as the effect of the prevailing south-west wind patterns. This is one of the first works in which TROPOMI NO2 retrievals are validated against ground-based observations and the results provide an early evaluation of their applicability for monitoring pollution levels in urban sites. Overall, TROPOMI retrievals are valuable to complement the ground-based air quality data (available with high temporal resolution) for describing the spatio-temporal variability of NO2, even in a relatively small city like Helsinki.

Highlights

  • Nitrogen oxides (NOx=NO + NO2) play an important role in tropospheric chemistry, participating in ozone and aerosol production

  • We evaluate the agreement between TROPOMI and Pandora NO2 vertical column densities by calculating the mean absolute difference (MD), the mean relative difference (MRD), the dispersion of the differences (σ ), the correlation coefficient (r) and the slopes of ordinary least squares and York linear regression fits for the measurements

  • We showed the results of the comparison between satellitebased TROPOMI/Sentinel-5 Precursor (S5P) NO2 products and ground-based observations at a medium-sized urban site in Helsinki (Finland)

Read more

Summary

Introduction

Nitrogen oxides (NOx=NO + NO2) play an important role in tropospheric chemistry, participating in ozone and aerosol production. NOx are mainly generated by combustion processes from anthropogenic pollution sources (including transportation, energy production and other industrial activities), and they are toxic in high concentrations at the surface (US-EPA, 2019). I. Ialongo et al.: TROPOMI/S5P NO2 observations in Helsinki ment), the only payload on-board the Sentinel-5 Precursor (S5P) satellite of the European Space Agency (ESA), is expected to revolutionise the way we monitor air pollution from space because of its unprecedented spatial resolution (3.5 × 7 km at the beginning of the mission and 3.5 × 5.5 km since 6 August 2019) and high signal-to-noise ratio. TROPOMI (jointly developed by the Netherlands Space Office and ESA) is designed to retrieve the concentrations of several atmospheric constituents including ozone, NO2, SO2, CO, CH4, CH2O and aerosol properties, as well as surface UV radiation. The S5P mission is part of the Space Component of the European Copernicus Earth Observation Programme

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call