Abstract

We analyse techniques for increasing the accuracy and efficiency of a finite-volume time-domain (FV-TD) cell-centred computational methodology. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell equations on multi-dimensional structured grid networks are investigated and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed by the use of Gaussian microwave pulse simulations. The implementation of typical electromagnetic boundary conditions is also deliberated. Finally, a comparison of the classical finite-difference time-domain (FD-TD) method and FV-TD numerical results for a standard case study in rectangular waveguides allows the accuracy of the developed methods to be assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.