Abstract
The A-TIG process (TIG welding with active flux) consists in depositing a thin layer of flux on the workpiece surface just before welding. The layer deposition can be done by brushing or spraying over the surface, and welding is performed after it dries out. It is found that with this process it is possible to increase productivity (travel speed) up to three times higher compared to the conventional TIG process. However, the physical phenomena associated with this practical gain of productivity still remains under discussion. Thus, the aim of this paper is to analyse the thermal efficiency and heat input in the welding process with the A-TIG compared with conventional TIG process using a liquid nitrogen calorimeter as a contribution to better understanding the physical associated phenomena. From the presented results, it is observed that the effects of A-TIG welding on the weld bead geometry are in agreement with previous work. In addition, it is possible to conclude that the thermal efficiency of the A-TIG welding is lower than the efficiency in conventional TIG welding. Thus, it is possible to conclude that the arc constriction is more important than the reduction of thermal efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.