Abstract

Vascular lesions such as port-wine stains and telangiectases are sometimes treated with carbon-dioxide lasers, argon lasers or argon-pumped dye lasers; however these lasers are non- specific in their thermal effect on tissues and as a result often cause significant scarring. Recently, evidence has accumulated that the flashlamp-pumped dye (585 nm) and copper- vapor (578 nm) lasers, which produce pulsed light that is efficiently absorbed by hemoglobin, are more selective in coagulating abnormal vascular tissue and as a result give a superior clinical result. It is not yet clear what the most important physical and biological mechanisms are during the light-tissue interaction mediated by these two lasers. The post-treatment sequence of events is different for tissue irradiated by each laser; most significantly, the flashlamp-pumped dye laser causes significant transient purpura, whereas the copper vapor laser causes blanching and eschar formation. The clinical outcome, that is regression of the lesion, is equally successful with either laser although some evidence has accumulated showing that the flashlamp-pumped dye laser is best suited to the treatment of small vessel disease while the copper-vapor laser is better for the treatment of large vessel disease. In this paper, we will discuss our observations of the treatment of vascular lesions on humans with the copper-vapor and flashlamp-pumped dye lasers using empirically derived efficacious treatment parameters. Mathematical models of light and heat propagation and in vivo experiments involving mice ears and rat skin flaps will be used to elucidate what we feel are the important underlying mechanisms of this vascular lesion laser therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call