Abstract

The effects of temperature, purity, magnetic state, and crystal structure on the thermal conductivity, electrical resistivity, and Seebeck coefficient of iron were obtained from measurements on Armco iron (99.5% pure, ρ300/ρ4.2=11.0) and a high-purity iron (99.95% pure, ρ300/ρ4.2=26.2). The most probable determinate errors of the measurements were thermal conductivity ±1.5%, electrical resistivity ±0.1%, and Seebeck coefficient ±0.9%; and larger absolute errors. Where theory permits, the thermophysical properties of iron are discussed in terms of contributing transport mechanisms. The thermal conductivity of iron can be calculated to ±1.5% between 0° and 910°C from electrical-resistivity measurements and the lattice portion of the thermal conductivity determined in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.