Abstract

The ferroelastic properties of a hard acceptor‐doped lead zirconate titanate (PZT) ceramic are investigated between room temperature and 300°C. Comparison with a soft PZT shows that acceptor doping has a stronger influence on mechanically induced domain switching than on switching caused by electric fields. A quantitative analysis of spontaneous and remanent strain and polarization indicates that poling in the soft material is dominated by 180° domain processes, while non‐180° processes dominate the strain behavior. If the mechanical load exceeds a threshold level, the “hardening” effect of the acceptor doping vanishes, and hard and soft materials behave identically. The results are discussed based on the defect dipole model and the charge drift model for hardening and aging in acceptor‐doped ferroelectric ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call