Abstract

The subject of the study. The work investigated the deformative, strength, and cost parameters of concrete beams with various reinforcement types. The nature of the behavior under a load of beams reinforced with steel reinforcement and beams with basalt reinforcement of multiple diameters has been studied. A research methodology is the studying of finite element models of the reinforced concrete beam. The Drucker-Prager model was used to simulate concrete behavior. For steel reinforcement, a bilinear isotropic hardening model, a linear orthotropic model was used for composite reinforcement. The goal is to reveal the advantages and disadvantages of using basalt composite reinforcement in reinforced concrete. Conclusion of the study. The paper considers the behavior of four models of reinforced beams. In the first model, a control one, steel reinforcement, is used. In the second, the composite reinforcement diameter is equal to the diameter of the steel one. In the third model, the diameters of the composite reinforcement are taken from the conditions of its similar bearing capacity with the steel one. The fourth model's composite reinforcement diameters have been taken from the requirements of its equal deformation with the steel one. The paper presents a method for calculating the corresponding diameters of reinforcement. The model in which the diameters of the composite reinforcement are taken from the conditions of its equal deformation with the steel reinforcement has the beam's best operation. In this case, the deformations and stresses in concrete practically do not differ from the corresponding stresses in the model with steel reinforcement. However, the utilization factor of the bearing capacity of the reinforcement in this model is deficient, and the cost of reinforcing elements is almost three times the cost of steel rods. The model in which the diameters of composite reinforcement are taken based on its equal bearing capacity with steel reduces the cost of reinforcement almost three times. However, such a beam's deformation and strength properties are significantly worse than in the control sample. The model with composite reinforcement diameters equal to the steel reinforcement diameters has no advantages over the model with steel reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.