Abstract

Objective: To compare the general biological characteristics and the expressions of proteins involved in secretion in stem cells from the pulp of human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC). Methods: SHED and DPSC were cultured and collected at passage 4 (P4) and P7. The submandibular gland epithelial and interstitial cells were cultured with tissue culture method. The cell morphology was observed using a phase contrast microscope. Flow cytometry was used to detect stem cell surface markers. Cell counting kit-8 (CCK-8) and IncuCyte ZOOM were used to evaluate cell proliferation. Quantitative real-time PCR (qPCR) was performed to examine the mRNA expressions of proteins involved in fluid and protein secretion. Results: P4 and P7 SHED and DPSC were spindle-shaped. There was no difference in cell morphology among the 4 group cells. P4 and P7 SHED and DPSC expressed CD29, CD44, CD73, and CD90, the mesenchymal stem cell markers, while, CD49f and CD117, the epithelium markers were undetected. There was no difference in cell proliferation among the 4 group cells. Compared with P4 SHED, the expressions of muscarinic cholinergic receptor 1 (MR1), MR3, aquaporin 5 (AQP5), β1-adrenoceptor (β1-AR), α-amylase, and mucin 5B in SHED were not different, while β2-AR expression was decreased (P<0.05). Compared with P4 DPSC, the expressions of MR3, β2-AR, and α-amylase in P7 DPSC were not different, while, the expressions of MR1, AQP5, β1-AR, and mucin 5B were decreased (P<0.05). Compared with primary cultured submandibular gland epithelial cells and gland tissues from a child, the expressions of proteins involved in secretion were all decreased. Compared with submandibular epithelial cells from adults, the expression of AQP5 in P4 DPSC was decreased (P<0.05), while other proteins were not different. The expressions of AQP5, β1-AR, α-amylase and mucin 5B in P7 DPSC were increased (P<0.05), while other proteins were not different. In P4 and P7 DPSC, all the protein expression levels were decreased, compared with those in submandibular gland tissues (P<0.01). Conclusions: Compared with DPSC, SHED have stable growth and the expressions of protein involved fluid and protein secretion are low. Based on its extensive sources and easy separation, SHED can be used as the ideal seed cell for salivary gland tissue engineering and the treatment of salivary gland hypofunction, and the P4 to P7 SHED can be used for experimental study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.