Abstract

The degu (Octodon degus) is a rodent that normally constructs burrows for nesting and rearing. To navigate inside these burrows, degus may use idiothetic and/or sensory cues more than visual information, which is less effective in burrows. Spatial information for navigation is processed in several key brain regions including the retrosplenial cortex (RS). However, the structural characteristics of the degu RS have not been previously reported. The present study measured the sizes of the RS and constituent areas 29 and 30 in the degu, and compared these to those found in the rat, which is a terrestrial rodent. The proportion of the rostrocaudal length of the entire RS relative to that of the entire cortex was significantly larger in degus versus rats. The proportion of the rostrocaudal length of the RS at levels rostral to the splenium of the corpus callosum relative to that of the entire cortex was also significantly larger in degus versus rats. Furthermore, the ratio of the estimated volume of area 29 relative to that of area 30 was significantly larger in degus versus rats. These results show that the degu has a rostrocaudally longer rostral RS with a larger area 29 compared to the rat, which suggests that these structural features may be relevant to differences in spatial information processing between the fossorial degu and terrestrial rat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call