Abstract

Amorphous forms of disodium etidronate were prepared by three manufacturing methods, heat drying, freeze drying, and anti-solvent precipitation, and the effects of these methods on the physical properties of disodium etidronate amorphous forms were evaluated for the first time. Variable temperature X-ray powder diffraction and thermal analyses revealed that these amorphous forms had different physical properties such as glass transition point, water desorption, and crystallization temperatures. These differences can be explained by the molecular mobility and water content in amorphous forms. The differences in the structural characteristics related to the differences in these physical properties could not be detected clearly by the spectroscopic methods like Raman spectroscopy and X-ray absorption near-edge spectroscopy. Dynamic vapor sorption analyses demonstrated that all amorphous forms were hydrated to form I, a tetrahydrated form, at above 50% relative humidity, and the transition to form I was irreversible. These amorphous forms require strict humidity control to avoid crystallization. Among the three amorphous forms of disodium etidronate, the amorphous form prepared by heat drying was the most suitable for manufacturing the solid formulation, considering the low water content and low molecular mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.