Abstract

The performance of three spectral techniques (FFT, AR Burg and ARMA) for maximum frequency estimation of the Doppler spectra is described. Different definitions of fmax were used: frequency at which spectral power decreases down to 0.1 of its maximum value, modified threshold crossing method (MTCM) and novel geometrical method. "Goodness" and efficiency of estimators were determined by calculating the bias and the standard deviation of the estimated maximum frequency of the simulated Doppler spectra with known statistics. The power of analysed signals was assumed to have the exponential distribution function. The SNR ratios were changed over the range from 0 to 20 dB. Different spectrum envelopes were generated. A Gaussian envelope approximated narrow band spectral processes (P. W. Doppler) and rectangular spectra were used to simulate a parabolic flow insonified with C. W. Doppler. The simulated signals were generated out of 3072-point records with sampling frequency of 20 kHz. The AR and ARMA models order selections were done independently according to Akaike Information Criterion (AIC) and Singular Value Decomposition (SVD). It was found that the ARMA model, computed according to SVD criterion, had the best overall performance and produced results with the smallest bias and standard deviation. In general AR(SVD) was better than AR(AIC). The geometrical method of fmax estimation was found to be more accurate than other tested methods, especially for narrow band signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.