Abstract

Model complexity in ecological niche modelling has been recently considered as an important issue that might affect model performance. New methodological developments have implemented the Akaike information criterion (AIC) to capture model complexity in the Maxent algorithm model. AIC is calculated based on the number of parameters and likelihoods of continuous raw outputs. ENMeval R package allows users to perform a species-specific tuning of Maxent settings running models with different combinations of regularization multiplier and feature classes and finally, all these models are compared using AIC corrected for small sample size. This approach is focused to find the “best” model parametrization and it is thought to maximize the model complexity and therefore, its predictability. We found that most niche modelling studies examined by us (68%) tend to consider AIC as a criterion of predictive accuracy in geographical distribution. In other words, AIC is used as a criterion to choose those models with the highest capacity to discriminate between presences and absences. However, the link between AIC and geographical predictive accuracy has not been tested so far. Here, we evaluated this relationship using a set of simulated (virtual) species. We created a set of nine virtual species with different ecological and geographical traits (e.g., niche position, niche breadth, range size) and generated different sets of true presences and absences data across geography. We built a set of models using Maxent algorithm with different regularization values and features schemes and calculated AIC values for each model. For each model, we obtained binary predictions using different threshold criteria and validated using independent presence and absences data. We correlated AIC values against standard validation metrics (e.g., Kappa, TSS) and the number of pixels correctly predicted as presences and absences. We did not find a correlation between AIC values and predictive accuracy from validation metrics. In general, those models with the lowest AIC values tend to generate geographical predictions with high commission and omission errors. The results were consistent across all species simulated. Finally, we suggest that AIC should not be used if users are interested in prediction more than explanation in ecological niche modelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call