Abstract

AbstractHydrogen production via plasma methane pyrolysis is investigated using a microwave plasma torch (MPT) and a gliding arc plasmatron (GAP). The performance of the two plasma sources in terms of methane conversion, product spectrum, and energy efficiency is compared. The physical and chemical properties of the produced carbon particles are compared. The methane conversion is higher in the GAP than in the MPT. In the MPT amorphous spherical carbon particles are produced in the volume of the plasma source. In the GAP methane pyrolysis in the volume stops after the production of acetylene. The conversion of acetylene into solid carbon takes place in a heterogeneous reaction on top of the electrode surfaces instead. This leads to a lower hydrogen selectivity, higher acetylene selectivity and more platelet‐like morphology of the produced carbon particles when compared to the MPT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call