Abstract
The characterization of mass-transfer processes in a chromatographic column during a separation process is essential, since the influence of the mass-transfer kinetics on the shape of the chromatographic band profiles and on the efficiency of the separation is crucial. Several sources of mass transfer in a chromatographic bed have been identified and studied: the axial dispersion in the stream of mobile phase, the external mass-transfer resistance, intraparticle diffusion, and the kinetics of adsorption-desorption. We measured and compared the characteristics and performance of a new brand of shell particles and those of a conventional brand of totally porous silica particles. The shell stationary phase was made of 2.7-microm superficially porous particles (a 1.7-microm solid core is covered with a 0.5-microm-thick shell of porous silica). The other material consisted of totally porous particles of conventional 3.5-microm commercial silica. We measured the first and second central moments of the peaks of human insulin over a wide range of mobile phase velocities (from 0.02 to 1.3 mL/min) at 20 degrees C. The plate height equations were constructed and the axial dispersion, external mass transfer, as well as the intraparticle diffusion coefficients were calculated for the two stationary phases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have