Abstract
The human equilibrative nucleoside transporters I and 2 (hENT1, hENT2) share 50% amino acid identity and exhibit broad selectivities, accepting purine and pyrimidine nucleosides as permeants. The permeant selectivity of hENT2 is less well understood because of the low abundance of the native transporter in cells amenable to functional analysis. Recent studies of hENT2 produced in recombinant form in functional expression systems have shown that it differs from hENT1 in that it transports nucleobases. To further understand the structural requirements for permeant interaction with hENT2, we compared the relative abilities of uridine, cytidine, and their analogues to inhibit transport of [3H]uridine by recombinant hENT1 and hENT2 produced in yeast. hENT1 and hENT2 tolerated halogen modification at the 5 position of the base and the 2' and 5' positions of the ribose moieties of uridine whereas removal of the hydroxyl group at the 3' position of the ribose moiety of uridine eliminated interaction with both transporters. hENT2 displayed a lower ability, compared with hENT1, to interact with cytidine and cytidine analogues, suggesting a low tolerance for the presence of the amino group at the 4 position of the base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.