Abstract
This study evaluated fracture torque by torsion, in relation to the length and diameter of orthodontic mini-implants, to demonstrate their viability for clinical and experimental use based on the torque recommended by the manufacturers. The fractures at the moment of insertion, whose incidence in the literature is around 4%, are principally due to excessive force and the inability of the implant to resist rotational forces. Thirty orthodontic mini-implants of three commercial brands available in Brazil (Neodent 1.6 x 9 mm, Dentoflex 1.6 x 9 mm and Kopp 1.6 x 9 mm) were attached to a device made specifically for this research, leaving the mini-implants with sufficient stability. The miniimplants were submitted to torsion torque, using a digital torque wrench, until their breaking point. The values obtained with the test were submitted to analysis of variance and the Tukey test. The mean values of mini-implant ruptures were 26 N.cm for group A (Dentoflex), 25.4 N. cm for group B (Kopp) and 32.8 N.cm for group C (Neodent). From the Tukey test we could observe that the relationships between the means of the Dentoflex and Neodent groups, and between the Kopp and Neodent groups, were significant. Between the Dentoflex and Kopp groups, significance was nonexistent. All the values found in our research for fracture torque were higher than the limits recommended by the manufacturers for clinical use in orthodontics. The highest values were found in the Neodent group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.