Abstract

In recent years, artificial cervical discs have been used in intervertebral disc replacement surgery and hybrid surgery (HS). The advantages and disadvantages of different artificial cervical discs in artificial cervical disc replacement surgery have been compared. However, few scholars have studied the biomechanical effects of various artificial disc prostheses on the human cervical spine in HS which include the Anterior Cervical Discectomy and Fusion (ACDF) and Cervical Disc Arthroplasty (CDA). This study compared the biomechanical behavior of Mobi-C and Prestige LP in the operative and adjacent segments during two-level hybrid surgery. A three-dimensional finite element model of C2-C7 was first established and validated. Subsequently, clinical surgery was then simulated to establish a surgical model of anterior cervical fusion at the C4-C5 level. Mobi-C and Prestige-LP artificial disc prostheses were implanted at the C5-C6 level to create two hybrid models. All finite element models were fixed on the lower endplate of the C7 vertebra and subjected to a load of 73.6 N and different directions of 1 Nm torque on the odontoid process of the C2 vertebra to simulate human flexion, extension, lateral bending, and axial rotation. This paper compares the ROM, intervertebral pressure, and facet joint force after hybrid surgery with the intact model. The results show that compared with Prestige LP, Mobi-C can improve ROM of the replacement segment and compensate for the intervertebral pressure of the adjacent segment more effectively, but the facet joint pressure of the replacement segment may be higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call