Abstract
Betalains are antioxidant secondary metabolites that emerged as safe color additives for food and cosmetics, fluorescent dyes, and redox mediators. Herein, we describe the semisynthesis of N-methyl phenylbetalain (mepBeets) and N-aryl phenylbetalain (dipBeets) dyes and compare the effect of the structure on their hydrolytic stability and electronic properties. Eight model compounds were semisynthesized by coupling betalamic acid with either N-methyl anilines or N-aryl anilines in ethyl acetate using p-toluenesulfonic acid as catalyst. The presence of electron-withdrawing substituents in the aryl moiety of mepBeets and dipBeets results in faster hydrolysis, lower anodic potentials and increased fluorescence quantum yields compared to the corresponding unsubstituted parent compounds. The results are rationalized by considering the charge distribution in the 1,7-diazaheptamethinium chromophore and are useful for the development of new hydrolytically stable betalain dyes with tunable redox and optical properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have