Abstract

BackgroundThe cells of the entire body, including the skeletal system, especially of young animals, may derive from the bone marrow in which they multiply. Therefore, it is important to assess whether the diet and quality of life of deer have a significant impact on the elemental composition of bone and bone marrow, which can directly affect their health and growth. The aim of this study was to determine the concentrations of macro- (Ca, calcium, P, phosphorus, Mg, magnesium, K, potassium, Na, sodium) and microelements (Li, lithium, Cr, chromium, Mn, manganese, Co, cobalt, Cu, copper, Zn, zinc, Se, selenium, Mo, molybdenum, and Sn, tin) accumulated in the bone marrow and bones of deer (Cervus elaphus). The study was carried out on 15 young stags divided into two groups: farmed and wild animals. The concentrations of macro- and microelements were analysed using the inductively coupled plasma mass spectrometry technique. This research expands our knowledge on this topic, which so far has not been extensively studied.ResultsThe mean content of K, Na, Zn and Se in the bone marrow of farmed animals was significantly higher than in wild deer, whereas the mean content of Ca, P, Mg, K, Na and Li in the bones was higher in wild animals than in farmed individuals (p < 0.05). In addition, the mean concentration of Cr, Mn, Cu, Se and Mo in the bones of the analysed animals differed significantly (p < 0.05) and was higher in the farmed deer. The mean concentration of Se in the bone marrow of wild deer decreased with the increase of the body weight (p < 0.05). In turn, the mean content of Mn in the bone marrow and of Mo in the bones of the animals was significantly positively correlated with the animals’ body weight (p < 0.05).ConclusionsThe obtained results indicated different levels of micro- and macro-components in the body of farmed and wild deer, though without clear and strong variations. Generally, the higher level of macronutrients in the bones of wild deer may be related to the higher physiological importance of these minerals for life activities in the natural environment and to the limited supply of balanced food. On the other hand, the higher levels of microelements in the tissues of farmed animals may result from their significantly better nutritional status in the first year of life, achieved through appropriate nutrition as well as diet supplementation of adult females.

Highlights

  • The cells of the entire body, including the skeletal system, especially of young animals, may derive from the bone marrow in which they multiply

  • The content of Li in the bone marrow of all animals was below the limit of detection likewise the level of Co in the bone marrow in the wild animals and Sn in the bones of the farmed deer (Table 2)

  • In comparison with the results reported by Hassan et al [44], the concentration of Cr in the bone marrow was twofold lower in the wild animals and similar in the farmed deer

Read more

Summary

Introduction

The cells of the entire body, including the skeletal system, especially of young animals, may derive from the bone marrow in which they multiply. The aim of this study was to determine the concentrations of macro- (Ca, calcium, P, phosphorus, Mg, magnesium, K, potassium, Na, sodium) and microelements (Li, lithium, Cr, chromium, Mn, manganese, Co, cobalt, Cu, copper, Zn, zinc, Se, selenium, Mo, molybdenum, and Sn, tin) accumulated in the bone marrow and bones of deer (Cervus elaphus). Macroelements (Ca, calcium; P, phosphor; Mg, magnesium; K, potassium; and Na, sodium) as well as microelements (Li, lithium; Cr, chromium; Mn, manganese; Co, cobalt; Cu, copper; Zn, zinc; Se, selenium; Mo, molybdenum; and Sn, tin) exert a huge impact on the proper development of the animal skeletal system Their deficiency may weaken or even inhibit animal growth and development, deteriorate the immune system, delay sexual maturity, and lead to bone fragility, e.g., osteochondrosis and osteoporosis [1,2,3]. Diet supplementation may help to maintain the animals in good health, but does not necessarily ensure a proper mineral supply

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call