Abstract

To better understand the deprotection reaction of the new promising phototrigger compound BHQ-OAc (8-bromo-7-hydroxyquinoline acetate), we present a detailed comparison of the UV-vis absorption, resonance Raman, and fluorescence spectra of BHQ-OAc with its parent compound 7-hydroxyquinoline in different solvents. The steady-state absorption and resonance Raman spectra provide fundamental information about the structure, properties, and population distribution of the different prototropic forms present under the different solvent conditions examined. The species present in the excited states that emit strongly were detected by fluorescence spectra. It is shown that the ground-state tautomerization process of BHQ-OAc is disfavored compared with that of 7-HQ in aqueous solutions. The observation of the tautomeric form of BHQ-OAc in neutral aqueous solutions demonstrates the occurrence of the excited-state proton-transfer process, which would be a competing process for the deprotection reaction of BHQ-OAc in aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call