Abstract

Early cleavage (EC) influences the development of the pre-implantation and post-implantation embryo. Symmetric cleavage (Sym) and asymmetric cleavage (Asy) have been observed in EC, but its molecular mechanism remains unclear. This study was designed to pick out the key candidate genes and signaling pathway between Sym and Asy embryos by applying Smart-seq2 technique. In in-vitro fertilization (IVF) 2-cell embryos, Sym embryos and Asy embryos accounted for 62.55% and 37.45%, respectively. The 2-cell rate, blastocyst rate and total blastocyst cells of Sym group were significantly higher than those of Asy group (31.38% vs 18.79%, 47.55% vs 29.5%, 71.33 vs 33.67, P < 0.05). The 2-cell rate, blastocyst rate and total blastocyst cell number in parthenogenetic activation (PA) embryos in Sym group were significantly higher than those in Asy group (40.61% vs 23.64%, 63.15% vs 30.11%, 50.75 vs 40.5, P < 0.05). A total of 216 differentially expressed genes (DEGs) incorporating 147 genes up-regulated and 69 genes down-regulated genes were screened under the p-value <0.05 and |log2 (fold change)| ≥ 1 when compared with Sym group. Further Gene Ontology (GO) analysis showed that these DEGs were related to the regulation of metabolic process, cell cycle, chromosome segregation, centromeric region and microtubule cytoskeleton. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEGs were mainly enriched to oocyte meiosis, cell cycle, p53 and Hippo signaling pathways. We concluded that asymmetric cleavage is a consequence of altered gene expression. Atg4c, Sesn2, Stk11ip, Slc25a6, Cep19 and Cep55 associated with mitochondrial function and cytoskeletal structure were probably the key candidate genesto determine the zygote cleavage pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call