Abstract
In 2011, the European Commission introduced new regulations on how nanomaterials are defined. Since then, researchers have emphasized that more complete characterization of nanoparticles (NPs) includes not just mass and size determinations, but also the determination of the particle number concentrations. In this study, two different sample introduction approaches for the analysis of NP suspensions with inductively coupled plasma mass spectrometry (ICP-MS) were investigated: pneumatic nebulization (sp-ICP-MS) and microdroplet generation (MDG-ICP-MS). These approaches were compared for the determination of particle number concentrations (PNCs) of gold and silver NP suspensions diluted in either ultra-pure water or citrate solution. For accurate sp-ICP-MS analysis, it is crucial to know the transport efficiency of nebulized sample into the plasma. Here, transport efficiencies, measured by the waste collection method, were 11-14 % for Ag suspensions and 9-11 % for Au. In contrast, the droplet transport efficiency of MDG-ICP-MS was 100 %. Analysis by sp-ICP-MS yielded a lower particle number concentration than expected (only 20-40 % of the expected value), whereas MDG-ICP-MS had NP recoveries up to 80 %. This study indicates that NP reference materials are of major importance for particle number determination and detailed results on particle number concentrations for different suspensions with respect to storage time are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have