Abstract

Acceptor-doped BaZrO3 (BZO) and BaCeO3 (BCO) both exhibit considerable bulk proton conductivity, which makes them suitable as electrolytes in electrochemical devices. However, these materials display high grain-boundary (GB) resistance that severely limits the overall proton transport in polycrystalline samples. This effect has been attributed to the presence of space charges at the GBs, which form because of segregation of protons and charged oxygen vacancies. This blocking behavior is less prominent in BCO, but in contrast to BZO, BCO suffers from poor chemical stability. The aim with the present work is to elucidate why GBs in BZO are more resistive than GBs in BCO. We use density-functional theory (DFT) calculations to study proton and oxygen vacancy segregation to several GBs and find that the oxygen vacancy segregation energy is quite similar in both materials while the tendency for proton segregation is larger in BZO compared with that in BCO. This is not related to the GBs, which display similar p...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call