Abstract

This paper reports on an experimental investigation using either rubber aggregates or steel fibres recycled from waste tires in the production of self-consolidating concrete composite (SCCC). Ten mixes are designed, one of them is the reference concrete. The natural aggregates are substituted by rubber particles by volume at 5, 10, 15, 20 and 30%. Recycled steel fibres are separately added to SCC mixes at volume fraction of 0.5, 0.8, 1 and 1.5%. The tested rheological properties of SCCC are slump flow diameter, T500 slump flow time, V-funnel flow time, L-box ratio, and the segregation resistance test. The compressive strength, the flexural strength, and total shrinkage are also measured on the 28 days. The experimental results show that the addition of recycled steel fibre is favorable for the SCC by means of increasing the flexural strength and reducing the shrinkage and the risk of cracking. Keywords: Self-consolidating concrete composite; Waste tires; Rubber; Steel fibers; Rheology, Strength

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call