Abstract

In this study, 15 soils ranging in Pb content from 32 to 6330 mg kg(-1) were subjected to in vitro gastrointestinal extractions with and without added powdered milk. Before and after treatment, Pb in the soils was fractionated according to a 7-step sequential extraction procedure. A subset of five soils and Pb acetate was used for a minipig dosing study. The amount of bioaccessible Pb determined with the in vitro system ranged from 3 to 20% without powdered milk and from 11 to 56% with powdered milk. The higher bioaccessibility of Pb in the in vitro model with addition of powdered milk was related to a depletion of Pb in the organic Pb pool and indicates that soluble milk constituents compete with soil organic ligands for Pb. The absolute and relative bioavailabilities of Pb in the minipig dosing experiment were not related to bioaccessible Pb determined in any of the two in vitro systems. However, relative bioavailabilities in liver, kidney, and total uptake were highly correlated to Pb in the third fraction of the sequential extraction that is attributed to easily reducible Mn oxides. These results indicate that reductive processes in the intestine may be more relevant for Pb absorption than the initial solubilization in the acidic stomach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.