Abstract

An exploratory study of the area surrounding a historical Pb-Zn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n=87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 μ g/g, Zn 870.25 μ g/g, Mn 696.70 μ g/g, and Cd 2.09 μ g/g. Zn concentrations were significantly correlated with Cd (r=0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n=23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of 'total' metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ≥ Pb > > Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call