Abstract

Nowadays, one of the most important challenges is to ensure sustainable agricultural management of crops such as maize (Zea mays L.). Long-term crop production, however, may influence the soil properties, the composition and activity of microbial communities. The aim of this study was to compare the catabolic activity and taxonomic diversity of bacterial communities inhabiting the soil of a non-fertilized maize monoculture and a natural grassland. Samples were taken from the horizons A and C in the first part of the vegetation period. MicroResp™ technique was used to explore the catabolic potential of microbial communities and next generation amplicon sequencing to reveal the bacterial diversity. Based on the catabolic activity results, higher differences were revealed among the soil horizons than the different land uses. The highest degree carbon source utilization was detected in the soil horizon A of the natural grassland. The taxonomic composition of bacterial communities was dominated by Proteobacteria. The relative abundance of other dominant phyla (Acidobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, Planctomycetes, Gemmatimonadetes, Chloroflexi and Patescibacteria) varied according to both the land use and soil depth. Amplicon sequences belonging to genera of r-strategist “copiotrophic” and K-strategist “oligotrophic” bacteria were identified from the soils of both maize monoculture and grassland.

Highlights

  • Maize (Zea mays L.) is one of the most important crops around the world, as human food and animal feed and as the raw material for bioethanol production

  • Fierer et al [19] studied the effect of different soil nitrogen concentrations on the phylogenetic diversity of bacteria in grassland and crop rotation soils using 16S rRNA gene amplicon sequencing, functional diversity by shotgun metagenome sequencing and catabolic activity profiles

  • The results of this study revealed that both the catabolic activity potentials and bacterial community structures differed according to the land use and soil depth

Read more

Summary

Introduction

Maize (Zea mays L.) is one of the most important crops around the world, as human food and animal feed and as the raw material for bioethanol production. Fierer et al [19] studied the effect of different soil nitrogen concentrations on the phylogenetic diversity of bacteria in grassland and crop rotation soils using 16S rRNA gene amplicon sequencing, functional diversity by shotgun metagenome sequencing and catabolic activity profiles. Their results showed differences both in phylogenetic and functional diversity and even in catabolic activity profiles along the nitrogen gradients; there were no strong differences in bacterial community structures, but an increase in the proportion of copiotrophic

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.