Abstract

Incorporation of plant biomass into soil as green manures can reduce soilborne diseases and improve crop and soil health in agricultural ecosystems. Soil microbial communities can mediate beneficial effects of these amendments, but their response to different types of green manures is poorly understood. This study tested the effect of green manures from broccoli, marigold, and sudangrass on taxonomic and functional characteristics of soil bacterial communities. Green manures were amended to field soil and maintained in microcosms artificially infested with the soilborne plant pathogen Verticillium dahliae. Lettuce seedlings were transplanted into green manure amended and fallow soil and maintained under growth chamber conditions for 12 weeks. Bacterial communities in bulk and rhizosphere soils were characterized using nanopore sequencing of 16S rRNA and shotgun metagenome libraries. Under microcosm conditions, all green manures reduced the abundance of the soilborne plant pathogen V. dahliae and altered the taxonomic composition of bacterial communities. Twelve weeks following amendment, green manures had differential effects on lettuce yield as well as the taxonomic diversity and composition of soil bacterial communities. In addition, multiple green manures increased the abundance of bacterial functional traits in rhizosphere soil related to iron and polysaccharide acquisition and decreased the abundance of functional traits related to bacterial protein secretion systems. This study demonstrates green manures alter the taxonomic composition and functional traits in soil bacterial communities suggesting these changes may impact beneficial effects of green manures on plant and soil health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.