Abstract

Directed energy deposition (DED) is a powerful method for hard‐facing the existing tool components. Herein, three tool steel grades including a newly developed maraging steel (NMS), a cold work tool steel (V4E), and a high boron steel (HBS) are cladded on a hot work tool steel substrate. After tempering, the cladded tool steels are exposed to high temperatures at 600, 700, and 800 °C for 3 h to evaluate their softening resistance. The results show that all three tool steel grades have a significant hardness drop when the softening temperature reaches 700 °C. The investigated NMS has the lowest initial hardness in the tempered state but the best softening resistance. In contrast, HBS has the highest initial hardness but the worst softening resistance among the three steel grades. V4E tool steel has a moderate softening resistance compared to the other two steel grades. The factors contributing to the softening resistance have been discussed. Corresponding conventional tool steels are also adapted as references for comparison. Except for the NMS, the additive manufacturing tool steel samples have a better softening resistance than the conventional counterparts owing to more alloying elements trapped in the matrix. The abrasive wear resistance of the tempered and softened tool steels manufactured by DED and conventional methods is also evaluated and the wear mechanism is discussed. Besides the hardness, the free spacing λ between coarse hard particles is one of the major factors influencing the abrasive wear resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call