Abstract

BackgroundSingle-voxel proton cardiovascular magnetic resonance spectroscopy (1H-CMRS) benefits from 3 T to detect metabolic abnormalities with the quantification of intramyocardial fatty acids (FA) and creatine (Cr). Conventional point resolved spectroscopy (PRESS) sequence remains the preferred choice for CMRS, despite its chemical shift displacement error (CSDE) at high field (≥ 3 T). Alternative candidate sequences are the semi-adiabatic Localization by Adiabatic SElective Refocusing (sLASER) recommended for brain and musculoskeletal applications and the localized stimulated echo acquisition mode (STEAM). In this study, we aim to compare these three single-voxel 1H-CMRS techniques: PRESS, sLASER and STEAM for reproducible quantification of myocardial FA and Cr at 3 T. Sequences are compared both using breath-hold (BH) and free-breathing (FB) acquisitions.MethodsCMRS accuracy and theoretical CSDE were verified on a purposely-designed fat–water phantom. FA and Cr CMRS data quality and reliability were evaluated in the interventricular septum of 10 healthy subjects, comparing repeated BH and free-breathing with retrospective gating.ResultsMeasured FA/W ratio deviated from expected phantom ratio due to CSDE with all sequences. sLASER supplied the lowest bias (10%, vs -28% and 27% for PRESS and STEAM). In vivo, PRESS provided the highest signal-to-noise ratio (SNR) in FB scans (27.5 for Cr and 103.2 for FA). Nevertheless, a linear regression analysis between the two BH showed a better correlation between myocardial Cr content measured with sLASER compared to PRESS (r = 0.46; p = 0.03 vs. r = 0.35; p = 0.07) and similar slopes of regression lines for FA measurements (r = 0.94; p < 0.001 vs. r = 0.87; p < 0.001). STEAM was unable to perform Cr measurement and was the method with the lowest correlation (r = 0.59; p = 0.07) for FA. No difference was found between measurements done either during BH or FB for Cr, FA and triglycerides using PRESS, sLASER and STEAM.ConclusionWhen quantifying myocardial lipids and creatine with CMR proton spectroscopy at 3 T, PRESS provided higher SNR, while sLASER was more reproducible both with single BH and FB scans.

Highlights

  • There is an important need to non-invasively quantify cardiac metabolic profiles since myocardial metabolic abnormalities are characteristics of common cardiovascular diseases.Noninvasive single-voxel proton cardiovascular magnetic resonance spectroscopy (1H-Cardiovas‐ cular magnetic resonance spectroscopy (CMRS)) allows to quantify of intramyocardial lipids and metabolites, such as creatine (Cr)

  • Reproducible and rapid 1H-CMRS will be very useful to follow cardiovascular disease progression and severity [6]: myocardial Cr is associated with the New York Heart Association grade of heart disease [2] and myocardial TG content is related to the cause of disease [7]

  • Voxel localization at 3 T and in vitro phantom experiment The three main 1H-CMRS sequences used to measure fatty acid content in the phantom were point resolved spectroscopy (PRESS), semi-adiabatic Localization by Adiabatic SElective Refocusing (sLASER) and stimulated echo acquisition mode (STEAM) (Fig. 1) with the refocusing RF pulses’ BW set to 1150, 1700 and 2200 Hz, respectively

Read more

Summary

Introduction

Noninvasive single-voxel proton cardiovascular magnetic resonance spectroscopy (1H-CMRS) allows to quantify of intramyocardial lipids and metabolites, such as creatine (Cr). Most cardiac 1H-CMRS at high magnetic field (≥ 3 T) have been limited to using conventional point resolved spectroscopy (PRESS) localization sequences [8, 9]. Single-voxel proton cardiovascular magnetic resonance spectroscopy (1H-CMRS) benefits from 3 T to detect metabolic abnormalities with the quantification of intramyocardial fatty acids (FA) and creatine (Cr). We aim to compare these three single-voxel 1H-CMRS techniques: PRESS, sLASER and STEAM for reproducible quantification of myocardial FA and Cr at 3 T. Sequences are compared both using breath-hold (BH) and free-breathing (FB) acquisitions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call