Abstract

Purpose. Films and TLDs have been the common choices for passive in-vivo dose measurement in radiotherapy. In the brachytherapy applications, it is very difficult to report and verify the dose at multiple localized high dose gradient regions and also the dose to organ at risk. This study was carried out to introduce a new and accurate calibration method for GafChromic EBT3 films irradiated using Ir-192 photon energy from miniature High Dose Rate (HDR) Brachytherapy source. Materials and methods. Film holder made of Styrofoam was used to hold the EBT3 film at its center. It was placed inside the mini water phantom and the films were irradiated by Ir-192 source of microSelectron HDR afterloading brachytherapy system. Two different setups: Single catheter-based film exposure and dual catheter-based film exposure were compared. The films scanned on a flatbed scanner were analysed in three different color channels: red, green, and blue using Image J software. The dose calibration graphs were generated using the third-order polynomial equations fitted on the data points from two different methods of calibration procedure. Maximum and mean dose difference between TPS calculated and measured was analyzed. Results. The measured dose difference from the TPS calculated doses were evaluated for the three groups of dose ranges (low, medium and high). In the high dose range, standard uncertainty of dose difference are ±2.3%, ±2.9%, and ±2.4% respectively for the red, green, and blue color channel when the TPS calculated dose was compared with single catheter based film calibration equation. Whereas it is observed as 1.3%, 1.4% and 3.1% for the red, green, and blue color channels respectively when compared with the dual catheter based film calibration equation. A test film was exposed to a TPS calculated dose of 666 cGy to validate the calibration equations, single catheter based film calibration equation estimated the dose difference as −9.2%, −7.8% and −3.6% respectively in the red, green, and blue color channels whereas the same were observed as 0.1%, 0.2% and 6.1% respectively when dual catheter based film calibration equation was applied. Conclusion. Source miniature size, reproducible positioning of the film and catheter system inside water medium are the major challenges in the film calibration with Ir-192 beam. To overcome these situations dual catheter-based film calibration was found more accurate and reproducible as compare to the single catheter based film calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.