Abstract
Automatic Speech Emotion Recognition (SER) is a current research topic in the field of Human Computer Interaction (HCI) with a wide range of applications. The purpose of speech emotion recognition system is to automatically classify speaker's utterances into different emotional states such as disgust, boredom, sadness, neutral, and happiness. The speech samples in this paper are from the Berlin emotional database. Mel Frequency cepstrum coefficients (MFCC), Linear prediction coefficients (LPC), linear prediction cepstrum coefficients (LPCC), Perceptual Linear Prediction (PLP) and Relative Spectral Perceptual Linear Prediction (Rasta-PLP) features are used to characterize the emotional utterances using a combination between Gaussian mixture models (GMM) and Support Vector Machines (SVM) based on the Kullback-Leibler Divergence Kernel. In this study, the effect of feature type and its dimension are comparatively investigated. The best results are obtained with 12-coefficient MFCC. Utilizing the proposed features a recognition rate of 84% has been achieved which is close to the performance of humans on this database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.