Abstract
In this work, Surface-enhanced Raman spectroscopy (SERS) along with machine learning algorithms (MLA) were used to detect and classify the viral particles to assess the possibility of using the spectra of inactivated influenza A viruses for MLA training and spectra database compilation for further study and diagnosis of intact forms of the virus. Viral particles inactivation was performed by formalin, ultraviolet and beta-propiolactone. Support vector method and principal component analysis allowed to classify intact and inactivated viral particles spectra with an accuracy of 80.0–96.7 %. The results obtained suggest that it is not advisable to create a spectral database and train machine learning algorithms for their further application in SERS diagnostics of intact viruses based on the spectra of the inactivated virus particles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have