Abstract

We present a molecular dynamics simulation study in which we compare and contrast the performance of a polarizable shell water potential model and non-polarizable water force field-extended simple point charge (SPC/EF) model in predicting the solvation dynamics of confined water molecules sandwiched between MgO(100) slabs. Structural features based on radial distribution functions, atomic density profiles, adsorption patterns, orientational ordering and dynamical correlations such as diffusional characteristics, hydrogen bonding lifetimes and residence probabilities are used as metrics for comparison. The simulations yield significant ordering of water molecules in the two layers adjacent to the oxide interface and the extent of ordering decreases with increasing distance from the oxide–water interface. These results elucidate that the dependence of local ordering and solvation dynamics on the molecular geometry and charge distribution, observed for typical three- and four-site water models, is generally lost for confined water if polarization is explicitly included. While the interfacial water structure predicted by the polarizable and non-polarizable models are similar, the confinement and interface proximity effects on the solvation dynamics are seen to be more pronounced for polarizable water models in comparison to non-polarizable ones. The study also shows that the polarizable water model over predicts the orientational order and under predicts the transport properties of confined water. In addition, analysis of the orientational preferences and hydrogen bonding characteristics of water near oxide interfaces suggests a higher degree of tetrahedral disorder in the polarizable shell compared to the non-polarizable SPC/E flexible model. The origin of the differences in solvation behavior of confined water between oxide slabs is analyzed based on the energetic contributions of the dispersive and electrostatic terms in the two force fields. Our findings suggest some new considerations regarding the role of polarization terms in predicting confinement and interface proximity effects that may guide future development of reliable polarizable water models for confined liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call