Abstract

Quantitative measurements of NO concentrations ([NO]) have been obtained along the centerline of atmospheric ethane–air counterflow diffusion flames by using saturated and linear laser-induced fluorescence (LIF). In particular, four flames with strain rates varying from 5 to 48 s −1 were investigated while maintaining a constant fuel dilution in all cases. The utility of a broad-band laser-saturated fluorescence (LSF) technique is assessed by comparison to similar measurements of NO using linear LIF. The linear LIF measurements are corrected for variations in the local electronic quenching rate coefficient by using major species profiles generated by a diffusive flame code and available correlations for the quenching cross-sections of NO. The corrected LIF profiles compare favorably with the LSF profiles. A four-level model is used to investigate the effects of rotational energy transfer (RET) on the LSF measurements. The excellent comparison between the quenching-corrected linear LIF and the LSF measurements at locally fuel-lean to greater than stoichiometric mixture fractions verifies the validity of the LSF technique for these conditions. The slight but consistent discrepancy between the LSF and linear LIF measurements at local equivalence ratios above 1.6 may be attributed to a change in the collisional branching ratio from lean to rich stoichiometries and/or the need for further work on the electronic quenching cross-sections required for quantitative NO measurements under fuel-rich conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.