Abstract
Soil texture is used to determine airflow, heat, instability, water holding capacity, and the shape and structure of the soil structure. Soil texture as an important attribute that determines the direction of soil management must be modeled accurately. However, soil texture is a soil attribute that is quite difficult to model. It is a compositional data set that describes the particle size of the soil mineral fraction (sand, silt, and clay). The methods used to classification and predict soil texture with machine learning algorithms are Random Forest (RF) and Naïve Bayes (NB). The purpose of this study was to classify the distribution of soil texture using the Random Forest and Naïve Bayes methods to obtain the most accurate grouping results. This research was conducted in the area around Kalikonto River Basin, East Java Province. The performance-based tests show that the RF algorithm provides higher accuracy in predicting soil texture based on the Digital Elevation Model (DEM). The results of RF’s performance testing on training data and testing data gave an accuracy value of 92.55% and 87.5%. Classification using the Naïve Bayes method produces an accuracy value of 89.98% on testing data and 80.65% accuracy on training data.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have