Abstract

Several modifications of the Schr\"odinger equation that dynamically reduce the off-diagonal elements of the density operator in the position representation (localization) have received recent attention in the literature. Models of quantum open systems provide localization for the system of interest by considering the effects of an environment on the effective master equation that describes the dynamics of the reduced density operator for the system of interest. In contrast, localization is introduced as a fundamental modification to the Schr\"odinger equation in quantum mechanics with spontaneous localization (QMSL) [G. C. Ghirardi, A. Rhimini, and T. Weber, Phys. Rev. D 34, 470 (1986)]. We compare several environment models and discuss some of the anomalous features of the effective master equations noted by Ballentine [L. E. Ballentine, Phys. Rev. A 43, 9 (1991)] by examining the Ehrenfest relations for position, energy, and momentum. Insight is provided into the relative importance of various terms in the effective master equations for several environment models. We also briefly discuss the implications of similar anomalous features present in the QMSL master equation in light of our analysis of the open-system models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.