Abstract

Horseradish peroxidase (HRP), a versatile heme-containing glycoprotein frequently used in medical diagnostics, is primarily isolated from plant. This process involves filtration, salt precipitation and several chromatography steps, which is expensive, renders low yields and gives isoenzyme mixtures. Although single isoenzymes can be recombinantly produced in Pichia pastoris, they get hyper-glycosylated in the yeast rendering the downstream process cumbersome and thus not competitive. In this study, we analyzed the purification of three HRP isoenzymes differing in the number of N-glycosylation sites recombinantly produced in P. pastoris. We wanted to 1) determine potential correlations between the mode of protein production and the resulting product quality and downstream process, 2) investigate correlations between the number of N-glycosylation sites of HRP and the mode of purification, and 3) find the optimal purification strategy for the recombinantly produced HRP isoenzymes. Thus, we applied different cultivation strategies and tested downstream processes employing both particlebased resins as well as monolithic supports. We showed that the mode of cultivation affected product purity but not the subsequent downstream process. Purification of each of the three HRP isoenzymes using monolithic supports was successful and independent of the number of N-glycosylation sites, whereas purification by particle-based resins was highly affected by glycosylation. Summarizing, we demonstrated a novel feasibility of using monoliths operated in flow through mode for the purification of comparatively small biomolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.